Link 13.doc

Link 13- People of research           

Under construction

 

                   

 

 

 

 

The founders of Italian Chemistry ( from Accademia delle Scienze detta dei XL, 1943 ).The women on the right is Prof.Marussia Bakunin.An interesting paper on melanoma-melanin was published by Bakunin in 1904.

 

Ricordo di Maria Bakunin del Socio R.A.Nicolaus in occasione della presentazione del ritratto alla

Accademia Pontaniana.

30 Gennaio 2003.

 

 

 

Alla prima pagina del Volume I degli Atti di questa Accademia vi è uno scritto di Benedetto Croce del 13 Gennaio 1949  che dice :

 L'Accademia Pontaniana è stata due volte soppressa nel corso dei secoli e due volte è risorta.

 Nata la prima volta nel 1443 intorno  ad Alfonso quinto d' Aragona, primo re di Napoli, sotto la direzione del Panormita e, nella nuova generazione, di Giovanni  Pontano, del quale le restò il nome, visse un secolo giusto. Fu fatta chiudere nel 1542 dal vicerè spagnuolo don Pedro de Toledo per sospetti di spiriti ereticali  e di cospirazioni antispagnuole.

Ma dopo oltre due secoli e mezzo, fra le riforme civili che si attuarono nel Regno di Napoli sotto i Napoleonidi, si ripensò anche alla antica Accademia del Pontano, della quale era rimasta una memoria circondata  di riverenza;  un gruppo di dotti, di scienziati e di letterati, radunati in casa di Giustino Fortunato ( Rionero sul Vulture 1777-Napoli 1862 ), la fece  risorgere,  e i  sessantasette volumi dei suoi Atti attestano che non fu inoperosa.

Ma nel 1934 il governo fascista, che si era dato  a immischiarsi nelle cose delle accademie  e  a  imporre a queste giuramenti  politici, pensò addirittura di  sopprimere la Pontaniana,  col pretesto che  a   Napoli  c' erano due accademie,  e ciò infrangeva  la legge  dell'  unità,  sacra  a quell' alto regime.  Rammento che il  provvedimento fu cosi  bene eseguito che la biblioteca  rimase abbandonata, in preda di chiunque entrasse nell'edificio di Tarsia ; Io, avvertito di ciò dall'ultimo Presidente, Pasquale del Pezzo, mandai segretamente, per mezzo di un amico, un appunto ad un impiegato, che sapevo a me devoto, del Ministero dell'Istruzione, suggerendogli di telegrafare immediatamente al Rettore dell' Università  affinchè consegnasse la biblioteca  al segretario della Reale Accademia di scienze morali e politiche o alla direzione della Biblioteca Nazionale. E così avvenne.

 M' illusi d' aver salvato quella biblioteca , che conteneva circa 3800 volumi ,  e serbava un  bellissimo  codice miniato del  De  liberalitate del Pontano , quattro volumi di  documenti  sull' antica Accademia  messi insieme  nel Settecento da  Gian  Vincenzo Meola,  che, avendoli ricevuti dagli eredi del marchese  Arditi per mezzo  della nostra socia  Enrichetta  Carafa  d'  Andria , ebbi  l' onore  di persentare all'  Accademia. Serbava, inoltre,  manoscritti del Pietro Napoli-  Signorelli  e  tutti  i  lavori giudicati  dall'  Accademia    nei concorsi che regolarmente  bandiva

 Ma nove  anni dopo , nel 1943, nei pochi giorni che  le soldatesche  germaniche  tennero Napoli  e  dintorni, furono da queste,  per vendetta e  con  freddo proposito ,  bruciate, insieme col nostro glorioso  e  secolare  Archivio di Stato, le biblioteche della Società  Reale  e della   Pontaniana.

.  Ciò  non  ostante, l'  anno  appresso, 1944, l'  Accademia, spoglia  di tutto , spiritualmente risorse, raccolse  i  suoi vecchi  soci , ne  nominò  di  nuovi,  ed ebbe forze  giovani  a  sua  disposizione  sotto  la  presidenza della   chimica  Maria Bakunin,  insegnante nella   nostra Università,   validamente  coadiuvata  dal  segretario  generale  Riccardo  Filangieri  Superate le difficoltà finanziarie, cominciò   a  ricomporre  una  biblioteca  e  a pubblicare i suoi  Atti,  dei  quali  questo  è   il  primo   volume   della  nuova  serie , curato  con  alta  competenza  dal vicepresidente Fausto Nicolini…………..

Il primo volume è interessante anche perchè riporta i verbali delle sedute del periodo 1944-1948. Il primo verbale reca la data del 12 Novembre 1944. L'Accademia si riunisce nella sala Tasso degli Archivi di  Stato offerta dal socio Riccardo Filangieri. Su proposta del Comitato viene eletto il Consiglio  della Accademia che risulta così costituito :

-    Presidente Onorario lo storico e filosofo Benedetto Croce socio dal 1892

-    Presidente  Maria Bakunin socio dal 1905

-  Vice Presidente il giurista e papirologo ma anche Ministro di Grazia e Giustizia e Pubblica Istruzione (1944-1945 ), Vincenzo Arangio-Ruiz socio dal 1928.

-      Segretario Generale lo storico ed archivista  Riccardo Filangieri socio dal 1927.

-      Segretario Aggiunto il letterato Emanuele Ciafardini socio dal 1929.

-     Tesoriere il matematico Enrico Ascione socio dal 1912.

- Amministratori il letterato Guido della Valle socio dal 1921 e lo zoologo Umberto Pierantoni socio dal 1928.

 

   Nello stesso periodo il 15 Febbraio 1944 furono eletti, su proposta del  Comitato dei Dieci ( Bakunin, De Lorenzo, Nicolini, Pierantoni, Omodeo, Arangio-Ruiz, Quagliarello, Carrelli, Cacciopoli , Filangieri ) , nella Classe seconda ( Scienze Naturali ),  due soci stranieri che si rivelarono di grande aiuto per l'Accademia :

Il Generale  USA Edgard  Erskine Hume, da civile Chief  Military Surgeon Association.

Il Colonnello scozzese George Robert Gayre of Gayre, da civile Direttore dello Istituto di Antropologia della Università di Edimburgo.

Alla fine della Presidenza Bakunin,  trascorso cioè il triennio,  il matematico tesoriere Ascione presentò un bilancio positivo per L.569.000. I soci erano in numero di 121 ( oggi 237 ). Essi avevano pubblicato e lavorato alacremente ma non ricevettero, come nella tradizione, alcun stipendio  nè vitto nè alloggio.

Il successivo triennio ebbe come Presidente Fausto Nicolini e come Segretario Generale Riccardo Filangieri.

Alla fine del 1948 l'Accademia era così composta  nelle Classi :

-        Scienze Matematiche, Presidente Mario Gleyeses, segretario Carlo Miranda,  soci 29.

-      Scienze Naturali, Presidente Gaetano Quagliarello, Segretario Geremia D'Erasmo, Soci 43.

-       Scienze Morali  , Presidente Romualdo Trifone, Segretario Ludovico De Simone, Soci 27.

-  Storia, Archeologia, e Filologia, Presidente Amedeo Maiuri, Sergretario Nicola Nicolini , Soci 31.

-       Lettere e Belle Arti,  Presidente Fausto Nicolini, Segretario Francesco Sbordone, Soci 22.

 

Dunque a reggere la prima Presidenza della ACCADEMIA  fu Maria Bakunin, una chimica.Come mai Croce la preferì ad altri ?.

 

Maria Bakunin , Marussia per gli amici, la Signora per gli altri, era nata in Siberia  a Krasnojarsk il 2 Febbraio 1873, figlia del  rivoluzionario e filosofo russo il principe Michail Aleksandrovic e di Antossia  Kwrathovoska,  (cratovoska) figlia di un deportato politico polacco.

Dopo un lungo periodo trascorso in Siberia dove il Bakunin scontava una condanna a vita l'intera famiglia con i figlioletti Carlo, Sofia, e Maria riuscì a riparare in Europa. Morto il padre a Berna nel 1876, Antossia ed i figli vennero a Napoli prendendo alloggio in una bella villa di Capodimonte di proprietà di un noto socialista l'avvocato Gambuzzi  che il Bakunin dovette conoscere in una delle tante incursioni segrete a Napoli,città prediletta dal  Bakunin  che la riteneva il luogo   ove meglio erano realizzati i suoi ideali anarchici. Dopo poco Antossia sposò il Gambuzzi  dalla cui unione nacque una figlia Tatiana.

 Maria ebbe la sua educazione a Napoli; frequentò il Liceo Umberto  e si laureò con grande onore nel 1895 in chimica. Poco dopo sposava  Agostino Oglialoro-Todaro direttore dello Istituto di Chimica Generale della Università di Napoli

Segnalo alcune date al Biografo :

1909- Professore di Chimica Applicata presso la Scuola Politecnica di Napoli

1911-Professore di Chimica Tecnologica Organica sempre presso la stessa Scuola.

1936- Professore di Chimica Industriale presso la Scuola Politecnica.

1940- Professore di Chimica Organica  presso la  Facoltà di Scienze della Università di Napoli fino al 1948 anno in cui il milanese Luigi Panizzi occupò la cattedra di chimica organica.

Per il biografo è necessario  sapere  che le date relative alla vita di Maria Bakunin non sono sempre di facile interpretazione perchè spesso fu preso, come riferimento della data di nascita   un certificato di battesimo ove la piccola Maria aveva già 8 anni circa.

Maria Bakunin, fu una  grande scienziata, donna forte e coraggiosa fino alla audacia  da taluni ritenuta   violenta e prepotente. Esercitò un forte potere su chiunque, uomo o donna che fosse, ricco o povero, debole o potente. Fu temuta e riverita da tutti e nessuno si ribellò.Ma non fu sempre cosi. In una sessione di esami del 1941 un ufficiale in divisa si presentò a sostenere l'esame di chimica organica ( secondo una disposizione Ministeriale i militari in divisa godevano di molte agevolazioni e non potevano essere bocciati). La Signora l'apostrofò : cosa fa lei qui così travestito ? L' ufficiale, sentendosi offeso, mise mano alla pistola e solo l'intervento tempestivo ed intelligente dello Ing. Bonifazi evitò una tragedia.

Rivelò un carattere forte e generoso fin da giovinetta.   Quando passeggiando per via Toledo in calesse con i fratellini,  riusci,  a domare il cavallo improvvisamente  imbizzarito o quando caduta la sorellina Sofia in un pozzo di Capodimonte si fece calare essa stessa nel pozzo riuscendo ad afferarla per i capelli.

Quando i Tedeschi nel 1943 misero a fuoco le biblioteche di via Mezzocannone, la Bakunin si sedette in prossimità delle  fiamme incrociando le braccia. Il tenente tedesco comandante, stupefatto da tanto coraggio dette ordine di ritirarsi ed i danni furono meno gravi.

 Io penso che Maria Bakunin fosse la persona  adatta a guidare  in quel periodo di violenti emergenze e di forti contrasti l’Accademia e che quindi la scelta di Croce fosse giusta.

 

La Signora abitava,con alcuni gatti, in locali ampi e tetri  attigui al numero civico 8 ed ai quali si accedeva da una porticina. Quando usciva di casa per recarsi all' Istituto al civico n° 4, vi era un fuggi fuggi generale, mentre l'Istituto Chimico appariva straordinariamente operoso. La Bakunin era molto dura ed esigente con il personale. Ho una sua pubblicazione scientifica dove nell'angolo destro in alto è scritto : prendere a calci Vincenzino ( il custode ) perchè non si è fatto le basette. Ma se qualcuno di loro si ammalava allora correva a visitarli ed ad assisterli.

Dopo la seduta Accademica che allora aveva inizio alle ore 11, i soci erano invitati a colazione. Assidui furono i Professori Torelli, Masone, de Lorenzo, Bassani, Longo, Del Pezzo, De Dominicis, e poi Giordani, Ippolito, Carrelli, D'Erasmo, Malquori, Cacciopoli. Si parlava di Scienza e di affari Accademici come al tempo del Pontano.

A differenza dai tempi del Pontano  i cibi erano molto semplici e sempre gli stessi : pasta nera scondita, carne di cavallo e patate lesse, un caffè di semi  da Lei stessa tostati . All'inizio tre o quattro gatti balzavano sul grande tavolo e finivano col mangiare nel piatto dell'ospite. Per me che non amavo gli animali la scena era disgustosa. Un giorno la Signora in vena di confidenze mi disse :  ricordatevi Nicolaus (mi dava sempre del voi) che se uno degli ospiti torna  costui è uno di cui fidarsi.

Durante la guerra autorità civili, militari e religiose sedettero al tavolo della Bakunin  o vennero semplicemente per aiuto e consiglio.

 Nel 1943 la città di Napoli era priva di acqua, luce, gas, lacera, affamata distrutta nei suoi edifici. Frequentatori della Bakunin erano anche i  due ufficiali militari alleati ( forse presentati da Croce o forse da un certo Montagna come risulta da una lettera indirizzata al Conte Filangieri e trovata di recente dalla  Cancelliera Signorina Badessa )   il Generale Hume  ed il colonello Gayre of Gayre.  Un giorno Hume dopo uno pranzo particolarmente squallido,  chiese alla Signora : ha bisogno di qualche cosa?  La  inaspettata risposta fu : alcool ed ovatta. Migliaia di litri di alcool e centinaia di chili di ovatta riempirono via Mezzocannone. Batuffoli di  ovatta imbevuti di alcool servirono a riscaldare  le nostre provette mentre bruciatori alimentati ad alcool facevano funzionare le nostre attrezzature e i gruppi elettrogeni.

I due ufficiali di passaggio per Napoli seguendo la linea del fronte furono molto generosi con la Accademia Pontaniana con regali di libri e denaro adoperandosi perchè l'Accademia non divenisse un alloggio per le truppe .Dopo la guerra il contatto con questi nostri soci fu perso.

Il mio incontro e il successivo rapporto con la Bakunin fu diverso da quello che interviene generalmente  fra docente ed allievo. Esso è rimasto  nella mia memoria.

Nella primavera del 1941  studente del secondo anno di Economia e Commercio, mi trovai dalle parti di Via Mezzocannone ed entrai a Chimica. Un luogo triste, un silenzio  rotto solo da un lontano brusio di macchine,  molto diverso da Economia di Via Caracciolo. Entrai in una camera del secondo piano ove incontrai una giovane assistente romana, la Dottoressa Giuseppina  Riverso che era stata mandata dal Prof.Giacomello di Roma ad elaborare i dati ottenuti ai Raggi X degli acidi orto e para nitrofenilcinnammici. Mentre parlavamo venne una Signora dal portamento fiero che mi sbirciò mentre si informava con la Riverso di come andassero i calcoli. Dopo una settimana la Bakunin credendomi uno studente di Chimica mi fece chiamare e mi propose di entrare nel suo laboratorio per fare una ricerca sui  pigmenti neri. Non dissi che  ero uno studente di Economia e Commercio ma provvidi subito a cambiare Facoltà e mi misi a studiare la chimica organica frequentando intensamente il laboratorio  e  ciò mi portò ad essere additato come uno studente modello Litigai spesso con la Bakunin perché ero uno spirito libero. Liti violente diverse da quelle che intervengono fra docente e discente.  Ricordo la lite, quando, suo assistente, contro la mia volontà, mi cedette al Prof.Luigi Panizzi il nuovo Professore di Chimica Organica o quando trasferitosi il Panizzi a Roma io lo volli seguire. Ciò nonostante la sua mano protettrice mi seguì sempre  fino alla cattedra ed oltre..

Verso la fine della sua vita  usciva raramente  di casa ma si dedicava allo studio delle lingue. In questo periodo il Cardinale Ursi le faceva visita   di frequente. Un giorno disse : questa donna è come   l'arcangelo  dalla spada fiammeggiante.

Il 17 Aprile 1960 Maria Bakunin moriva  nella sua casa di via Mezzocannone. Scompariva un professore universitario autoritario ma di grande fascino e prestigio. Il  ricordo  per il  contributo  dato da Maria Bakunin accanto a Croce alla rinascita della  Accademia   Pontaniana non potrà essere facilmente cancellato .

 

 

www.tightrope.it/nicolaus/index.htm

 

Napoli 30 Gennaio 2003.

 

 

###################################################

In memory of Professor  Giuseppe Prota

(1938-2003)

 

G.Prota ‘’ Melanins, Melanogenesis, Melanocytes  :  looking at their functional significance from the chemist viewpoint ‘’ Pigment Cell Res., 13, 283-293, 2000.

 

-----------------------------------------------

Internet communique of Prof.R.A.Nicolaus.

 

It is with deep regret that we announce the death in Naples of Giuseppe Prota.  Professor Prota was a prominent scientist of the Naples School of pigmentation founded by L.Panizzi in 1950. Professor Prota was   the founding President of the ESPCR  ( European Society of Pigment Cell Research ) .

His many important contributions to the chemistry of pigmentation include   the structure  of pheomelanins ( 1958-1971 ), with M.Piattelli, L. Minale, E. Fattorusso, R.Scarpati G. Scherillo, A. Bolognese, G.Cimino, G.Sodano, S.De Stefano, C.Santacroce, D.Sica,  R.A.Nicolaus  .

Professor Prota was able after the student revolt of 68, to continue with success the study of pigmentation until his death.

He published over 200 scientific papers and many chapters and reviews.

His book ‘’ Melanins and melanogenesis  ‘’ AP, San Diego 1992,  is a classic in the field of pigmentation .

 

 

################################################################

 

The Protas : a family of scientists

 

 A family heirloom by Dr. J.T.Bagnara   taken from  PASPCR, March, 2003 .

 

 

 

I first met Peppe at the VIIth IPCC held in Seattle in 1969 when he burst upon the scenes with an elegant elaboration of pheomelanin chemistry derived from his work with his Neapolitan mentor, Rodolfo Nicolaus.

Peppe and I immediately developed  a happy  rapport  enhanced  by his  being  a Neapolitan and my having  similar genetic  roots. About a year  later we began to  expand our  friendship  when I went to the  Stazione  Zoologica di Napoli to work for nine months.  Peppe was doing some of his  research at the  Stazione  and  Giovanna was working there independently doing electron –microscopy.  Lou and I soon  began to  interact socially with  Peppe, Giovanna, and their two sons, Francesco and Paolo, who were then little boys. In  addition to luxuriating together on  Neapolitan cuisine,  we began to make family outings with them.  Since by nature , I  have  always  been  a jock  ,I took  advantage of my status as a Fullbright Scholar and I obtained a permit to utilize NATO recreational and athletic activities in the area.Among  the available facilities was a large park, north of Naples near Pozzuoli.It was a large and flat expanse that was the crater of an ancient volcano. A children’s playground was included with nearby picnic facilities. I remember vividly having taken the Protas there  and I call still see Francesco and Paolo on the swings and running  like the wind on the green glass as we picnicked together.It was  a far cry from the center of Naples in 1971.

In that same area we had  another memorable experience : although both Peppe and Giovanna were born and bred in Naples they, like many Neapolitans, knew less about some of the area than we two newcomers. Thanks to Lou’s ardent study of guidebooks of the  Naples environs, we knew of some wonderful Roman remnants that were to be seen in this area just north of Naples at Baia and Baccoli. The former  was the home port of the Roman fleet  and the latter boasted of a vast cistern that supplied the fleet with drinking water. This immense cistern was carved  out of tufa ,the volcanic ash which underlies the region. The now empty cistern, known as piscine mirabile it was underground room whose ceiling is supported by enormous, but graceful columns. It is absolutely beautiful. Peppe and Giovanna  did not know that it existed, so we took them to see it, knowing that in order to gain entrance, one had to go the second, not the first, ice cream vendor who, as I recall, would supply the key in exchange for 100 lire.They were truly amazed both by piscine and how we got there.

 

Peppe introduced us to Professor  Nicolaus  and  his  wife  who kindly  invited us to their home for dinner.  There was always much humor  in their presence because they  were  each characters.  Lou remembers a funny incident at dinner  related  to the fact that  Europeans  and Italians  in particular, unlike Americans , serve each food  item on different dishes.  Professor Nicolaus remarked  that he preferred to have everything  served on the same plate in order  to reduce the intake of dishwashing  detergents which surely clung to the washed dishes! An  other time that  Peppe and Giovanna took us to visit the  Nicolaus s was late in the evening , and  I believe unannounced,  after we had  been out to supper not far from  their home. We  were  greeted warmly,  and  Signora  Nicolaus insisted that  we be served a  digestive which  normally one would think to  be an after  dinner  liqueur.  Instead, la  Signora prepared us each a nice dish of spaghetti , which Lou  recalls had a sauce of aglio e olio (garlic and olive oil ). Despite our  having  had  full stomachs, the pasta was eaten with  gusto.  In  retrospect, perhaps pasta is a better  digestive  agent than is hard  liquor which probably impedes  digestion by  denaturing appropriate digestive  enzymes!.

 

During  this period , the  Protas and  I initiated a research  collaboration that solved an important  problem  for me. In the mid- sixties,  when  John Taylor was  a  graduate student of mine, he and  I  discovered that the  melanosomes of adult  Mexican  leaf frogs were unusually  large, fibrous in  nature, and contained a red pigment that was not melanin.  For various reasons,  we  did  not further pursue this discovery, but  while I was at  the  Stazione, I  presented  Peppe  with frog skin for analysis  We thought that the red  pigment might be a  phaeomelanin relative.  We soon  found that this was  not the case, so we embarked on a project to elucidate the chemical nature of this red pigment.  Over Dinner in our small apartment in the heart of  Naples , we finally  decided to call this novel pigment rhodomelanochrome  (a red pigment found  in  melanophores).  We used this  designation  in a first  paper  published  in  Science in 1973.  About this time  Giovanna moved  to the chemistry  department and she took the lead  on the project.  Before too long the Protas discovered that  rhodomelanochrome  was not novel  and was, in fact, pterorhodin, a pteridine  dimer, first described from the eyes of marine neireid  worms  and never  before found in a  vertebrate species.  During our  Neapolitan sojourn , Peppe and I had  frequent discussions, and as you can  readily  imagine, never  without passion! One subject that was a  favourite of  Peppe’ s for many years was the perception that  the  USA and the  medical community were overly dominant in matters pigmentary. He  felt basic and comparative  elements of investigation were under  represented and that  European leadership  lagged behind.  We  often talked of organizing a conference on basic  and  comparative aspects of pigmentation that we might hold in  Erice in  Sicily or in  Ravello on the  Amalfi Coast .  I am sure  that these sentiments of the  early  1970 s contributed heavily to  Peppe’ s drivetoward forming  the  ESPCR ten years later.  During the intervening years his views  toward the more  medical aspects of  pigmentation  mellowed as we all know .

 In the  years  following our return  from  Naples, my  contact with  Peppe  was  mostly  at professional meetings,  and at least  twice , Peppe came to  Tucson. On  one occasion, in  1975, following the IXth IPCC in  Houston  when  Peppe came to  spend a  few  days with us, we had a  glimpse of his intellectual side .  Peppe began telling us about a very interesting  gentleman, Don Andrea Giovene,  who lived in his apartment building on  Via F.P.Michetti, and whom he wanted us to meet on our next trip to Naples . Lou  was very surprised by this because she had just purchased a set of three novels The Book of Sansevero, by Don  Andrea Giovene. These works had just made their way to the USA after having had an historic success in Europe where they were translated into many languages. Not long after Peppe ‘s return home, Lou received an autographed bookmark from Don Andrea.

In 1985 Lou and I again lived in Italy worked on some manuscripts with zoologist friends in Naples . Rather than live in Naples we rented an apartment in Sorrento for several months. About the same time Peppe and Giovanna, like many Neapolitan yuppies had  purchased a weekend home on the Sorrentine peninsula. Theirs was located in Termini, near the end of the peninsula . Thus, it was easy to get together with them either in Sorrento or in Termini. Peppe and Giovanna had many friends who had homes nearby, and sometimes we were invited to dinner parties at the homes of people we did not know.Nevertheless, these were really interesting events that heavily taxed our abilities in conversational Italian.

Since 1985 we have returned to the Sorrento   area where we have rented an apartment almost every year.Before Giovanna’s death we  saw  the Protas often , either on via Toma in Naples or in the Sorrentine peninsula. Even when the Protas were not in residence at Termini,we thought of them when we passed their house as we liked the trail to Punta della Campanella at the very tip of the peninsula.

It has been several  days since you  sent  us the terrible news of  Peppe’ s passing , and the sense of a deep  loss  stays with us.  Fortunately, as  I told you in my  initial response, Lou and  I have that happy  memory of  lunch  with  Peppe at  Marechiaro almost three years  ago . Marechiaro  is one of the old  fishermen’ s  ports of  Naples , and like  Santa Lucia, it is famous in old  Neapolitan songs.  Lou and  I had never been there, and we  shall never forget it, not only because it was where we last saw  Peppe, but  because we  had  what used to be a  typical Neapolitan experience As we left the restaurant and were approaching  Peppe’ s car, a Vespa  rode  up and  brushed close to me. The driver grasped for  my borsellino  (small Italian handbag ). He was , however , unable to wrench it from my grasp . I think  that  Peppe was mor shocked than I ! In retrosped, it seems fitting that our last  goodbye to  Peppe was marked by a  typical Neapolitan experience ! These are among the memories that we have of  Peppe Prota, an old and respected friend who was taken much too soon and whom we will miss  greatly.

 

Joe Bagnara    

 

#######################################################

 

 

 

 

 

 

People of BCM and BSM

 

 

A

 

Agrup G., Au P.C., Artusi G., Allen B., Aureli G., Albert D.M, Allegri G., Ambani J., Akiu S., Albert K., Abramson M.B., Albrect L.,   Achiba Y., Alvarado-Swaisgood A.E., Andrade-Gordon P., Abeysekera R.M., Agren H.,  Anderson G.R., Allegroni M., Ardonceau J., Adams R.M., Appella E., Alexander M., Arimondo E., Allamandola L.J.,Aimes., Aroca P., Aisen P., Aoki S., Ali S., Ambrose M., Al-Rasheed R., Alberts J.J., Ahn G., Aoyama M, Aoyama M.,

B

 

Bechguard K., Blois M.S., Borovansky J., Bernstein M.P., Binns G.F., Ballard D.G., Berardi V., Bickle Q.D., Beerman F., Birbeck M.S.C., Bazelon M., Badger G.M., Brown L., Bertazzo A., Balch C.M., Bergstrom A., Bickle Q D., Basrur V., Brodsky M.A., Babbitt B.W., Bartlett P.N., Balkema G.W., Bishop C.A., Blarzino C., Brewington T., Bolivar-Marinez L.E., Bologna J., Behnke J. M., Bergstrom A., Becke A.D., Bernal J.D., Brabec C.J., Barbetta M., Bolognese A., Bell A.A., Baccichetti F., Bocchi V.. Barton D.H.R., Bonomi R., Becker R.O., Bowen E.J., Bassett C.A.L., Butenandt A., Bagnara J.T., Brunello F., Brown H.W., Burger A., Benathan M., Baker R.A., Berg K., Bulow G., Bolt A.G., Berger M., Bernstein H., Baweja R., Bakunin M., Biondi A., Brackman, W., Beer R.J.S, Broadhurst T., Benassi C.A., Brunet T.B., Bouchilloux S., Barden H., Bu’Lock J.D.,

Borg D., Betsill M.L., Bayer E., Bergmann W., Bezzi M., Berlin A., Blinova M.I., Borgioli G., Bianchi S., Bora N., Buta C., Brunner H., Bernhagen J., Breeze D., Barth S.W., Bertile F., Busch J.D., Bullock G., Baumont R., Beer J.Z., Babalola O.E., Biester H., Boucher E., Berthoud H.R., Berson J.F., Borges C.R., Ben Khodher M., Ben-Shachar D., Brian Nofainger J., Bundred P.E.,  Bruggeman C., Barrot M., Bittencourt J.C., Brunk U.T., Bailey N.J., Baranger P., Brunk U.T., Borchers R., Biester H., Berthoud H.R., Berson J.F., Borges C.R.,

 

C

Cardin  E., Costa M.G., Corradini P.,Celentano F., Caldas M.J.,Chillemi R., Commoner B., Cooper L.N.,Coleman L. B., Cohen M.J.,Cervinka O., Chance R.R.,Coccia R., Cowan D.O.,  Cheng J., Camacho- HubnerA., Chacon J.N., Clar E., Califano L., Croonbridge C. J., Cannella  C.,Cioslowski J., Cassidy D., Callegari C.,  Clancy C.M., Cotzias G., Costanzo M., Jimenez-Cervantes C.,  Casnati G., Chang C. K., Couris A., Chen J., Cohen M.J.,   Chio S.S., Collier J.H., Croonbridge C., Carlson J. A., Chen C.T., Cyvin S. Czira G., Collman J., Cini C.,Chavin C.Cott H. B., Caglioti L., Cariello L., Crescenzi S., Capasso S., Chen Y. M., Cimino G., Chioccara F., Chiovini J., Colin-Nicol J.A., Chierici L., Commoner B., Corry P.M., Culp L. H.,Cappelletti R., Crippa P.R., Chakraborty A. K.,Chakraborty D.P.,Chedekel M.R., Carlberg M., Cervinka O., Costa C., Cheshire M. V., Cranwell P. A. , Corby P., Casadevall A., Chan A.C., Chenug F.C., Collins C.A., Choi B.,  Christensen B.M., Cruze J.M., Croy R.R., Caccavo F. jr, Chen S.H., Canario A.V., Conte P., Cardin D.J., Chaillou E., Combet E., Criscuolo F., Collins C.D., Cooke C.M., Chen J., Cho M., Chung H., Cheng M.L., Chiu D.T., Crouzet C., Cornu S., Corkern M., 

D

 

Dilly P.N., Devaney E., Denton E.J., Dzierzega –Lecznar A., Danieli R., Delhaes P., Dink J., Delhaes P.,   Duncan M.A., Daum N., Denisov V.N., Dennis J., Dyakonov V., Denisov V.N., Dudis D., Dao L.H., Dragotti G., D’Ischia M.,  Deflandre A., Dietz T.G., Dover J.S., Duff G.A., Dovinola V.,  Dunnell R., Dawis W.G., Donnellan B., Duchon J., De Stefano S., D’Agostino M., Danise B., Discher C.A., Dini A., Dukler S., Dunne L.G., Deibel R.B., Drya T.B., De Rosa S., Das K.C., De Antoni A., Dall’Olio A., D’Ascola G., Darrow K.K., Davis E.A., Dieguez C., Dzierzega-Lecznar A., Double K.L., DiLeone R.J., De Leo F., de Hoog G.S.,  Doherty S.J., Date Y., Deuschl G., Dijkstra C., Dekker J., Dai S., Dadarwal K.R., Domenech J., Di Bilio A.J., Defina N.,

 

E

 

Ellis R.A., Edelstein L., Epstein J.H., Ellis D.H., Evans E.L., Eckels D.E., Elofsson R., Edholm W., Egami T.Elsenbaumer R., Endo M., Emery V.J., Ecomble M.M, Eisner M., Eygendal D., Ekol T.M, Eisenhofer G.,  Elias C.F., Eglite E., Egeberg P.K.,  Elleder M., Elsner P.,

 

F

 

Fisher L.R., Florey E., Fingerman M., Fuiji R., Fox S.W., Fox D.L., Fox H.M., Fitzpatrick T.B., Fattorusso E., Fleschman R.D., Forrest F.M., Forrest I.S., Felmeister A., Fiorino C., Fujinuma Y., Felix C.C., Filatovs J., Flesch P., Fujita K., Falshaw C.P., Floyd A.J., Faraga P.S., Forrester A.R.,  Funasaka Y.,Fischer H., Fowlks W.L., Frazer A., Fontana M., Ferraris J., Fasano M., Foster H., Fuso F.,Frommer G.E., Fenichel G., Fernberg J., Frummer J.E., Favretto D., Foppoli C., Furetto D., Fujikawa K., Frangioni G., Funahashi H., Foldenyi R., Reyes M.G., Faraldi F., Fukushima M., Fellman D., Fanget B., Franchi A., Fujioka  Y., Fukushima M., Figuerola J., Farmer P.J., Fahimi I.J., Fahimi I.,

 

G

 

Goldman J.M., Goodwin T.W., Gettens R.J., Gordon M., Ghiara G., Giordano F., Griffits D.A., Guggenheim M., Greiner A.C., Graham D.G., Goodchild N.T., Gudowska E., Gonzales F.J., Glees P., Galvano D.S., George P., Griffith J.S., GutmanF., Gouterman M., Goodings E.P., Garito A.F., Gross B., Gan E.V., Graven R.A., Graupner W., Graham D.G., Georgevich A., Garcia-Borron J.C., Goetz N., Gallas G.M., Graner P., Grencis R.K., Gossauer A., Gilpin-Brown J.B., Gomez P.F., Guidoin R., Graven R.A., Gadd G.E., Gozzi S., Golden P., Garner J.M., Gilard P., Gesualdo I., Garcia M.C., Gualillo O., Garcia-Rivera J., Gerlach M., Gomez B.L., Georgescu D., Gummer C., Gallas J.M., Guan J.L., Geraedts K., Gurol M.D., Gehring C.A., Gu Z., Guo H., Gu B., Gunasekara A.S., Gavrilova V.P., Gidanian S., Gomez B.L., Ghiorse W.C.,

 

H

 

Hilti.B.,  Hruza G.J., Hountas A.,  Hua C., Hepworth D. G., Herve M.,  Heeger A.J.,  Hikichi K.,  Hearing V.J., Horak V.,  Hodgson A.J., Hirshinger J., Hach P.,  Hudson T.W.,  Hindemith A., Homann K.H., Haddon R. C., Harrist T., Huang B. R., Hummelen J.C., Hawking S., Hare J.P., Hirsch A., Helgaker T., Hurley L., Huh F.B., Hayes M.H.B.,  Hannay N.B., Herzfeld K., Hay J. M., Hu F., Hegnaver H., Hearing V.L., Hansson C., Hashimoto K., Hark M.H.,  Helmy F.M., Halprin K.M., Hamada G., Hultin T., Haberman H.F., Hempel K.,Hagstrom B., Harley – Mason J., Haworth R.D., Hall K., Hui I., Hason M.,  Harem R.H., Havinga E., Hyde L.S., Hermstedt E., Hansson N., Holmes C., Hearing V.J., Ho L.C., Hamilton A.J., Hay R.J., Henzi P., Haq I., Hillyer J.F., Hughes P.M., Hachicha R., Hsu C.S., Hung M.Y., Halim M., Heo M.Y., Ho H.Y., Huang Y.W., Hur J., Harper D.C., Howeler M.

I

 

Ishikawa K., Ito S., Isenberg I.,Iaccheo A., Ingram D.J.E., Iin P.S.,  Ichisakhi  M.,  Iwuoha E.J., Iong L.K.J., Inhaffen H.,Ingber D.E.,  Iembo A., Imperato F., Imokawa G.,   Isotalo H.,  Isaac R.E., Iwuoha E.I.,  Izumi Y.,Isutsumi A.,  Ikeda R., Ikeda K., Iqbal J., Iihara K., Ichikawa H., Iavmetdinov I.S.,

 

J

 

Jiminez-Cervantes  C., Jeffs P.W.,  Joshua G.W.P., Jastrzebska  M.M., Jara J.R.,  Jacobsen C.S., Jimbow K., Jonsson D., Jellinger K., Jahns K., Jasne S., Jin H.Y., Jacobson E.S., Johnson S.M., Jeong J.H., Jo B.K., Joone G.K., Judd S.J., Juhna T., Jin B.,

 

 

K

 

Kon K.S., Korner A.M., Kertesz D., Kbatcha-Dourian C.K., Karasek M., Keyzer H., Karremann G., Kwork L., Kirkpatriek D.S.,  Kono R., Korytowskr W., Kukita A., Kodja A., Kato T., Kiyota M., Kaul B. L., Katzlan R., Kononova M.M., Kaiser A., Kuzloz J.E., Kanazawa K.K., Krounbi  M., Kzoesche P., Komoto M., Korin B., Kasuya A., Kikuchi K., Kakoussis V., Kagedal B., Kobayashi I., Konmehi G., Konradsson P., Kano R., Kertesz D.,  Kurban A.K., Korner A., Kirby G.W., King M.W., KrotoH.W., Kushimoto T., King J.A., Kajzar F., Kienz E., Kim K.,Kondon   H., Keynes R.D., Kempf V.R., Kym P.R.,  Kauser S., Kamlmykova N.V., Kuzminykh E.V., Kitchell B.E.,  Kaplan H.J., Koeberle M.J., Kangawa K., Kamat P.V., Kohno S., Kim H.P., Klavins M., Kuske C.R., Korossy K.S., Kobayashi N., Kim C.G., Kim N.R., Kawasaki M., Koczorowska E., Kinniburgh D.G., Koroleva O.V., Keppler F., Keppler F., Karlsson S.A., Keppler F., Knicker H.,

 

L

 

Laey M. E., Levi A. C.,  Lewis J.S., Little W.A., Lutzner M.A., Lovas F.J., Leising G., Land E.J., Lazzeretti P., Lagouvardos D., Lewis P.A., Lambert C., Lovelock J., Lozano J.A., Leidner C.R., Langer R., Lee C.,  Ljach S.P., Larsson B., Lorner A.B., Linbladh C., Lamb J.H., Lee H.R., Laxmyz L.,  Levorato E., Lise M., Liberatore R., Longuet – Higgirs H.S.,  Lictowitz  T.A., Lynton E.A., Lyon L.E.,  Linert W., Lopez M., Liu Y., Littrell K.C., Lammle K., Liou R.M., Lengyel Z., Lucius R., Lanisnik Rizner T., Lee K.T., Lee K.S., Latifoglu A., Lant P., Lee H.S., Lutz T.A., Lester J.N., LeBoeuf E.J., LU F.J., Liu Z., Lokshin B.V.,

 

M 

 

 Morrica S., Masaki A.,Miyake Y., Mishima Y., Milosa M., Menkes A., Murphy     D.W., Murray S., Mailly D., Montague P.M., Martinez- Liarte J.H., Mortensen K., Marconi G., Mavrin B.N., Medrano J., Merkel M., Masciarelli G., Moos S.C., Margolis R.J., McCreery R.L., Maschler H., Meigs G., McGinness J.E.,  Murphy G.F., Mousdis G., Martinez- Esparza M., McDevitt J.T., Misuraca G.,Mars U., Mayer C., Mommaas A.M., Matsusaka H., Menter J.M., Mott N.F., Mihm M.C., Mosca L., Matsunaga J., Meyer D.J., Mishra S.N.,  Mackay E., Malagoli M., Matsuoka L.Y., Manini P., Miljak M., Machadlay E., Montagna W., Morton R.A.,Maling J.E., Minale L., Mazzarella L., Miyamoto M., Miner R.W., Mason H.S., Macginitie G.E., Macginitie N., Merkle F.H., Mansour A.M., Menon J.A., Magno S., Mangoni L., Mauie D., Mahvi A., Moorhed W.D.,Mizutani T.B., Massalski T.B., Miyake Y., Miura R., Mojamdar M., Musaio L., Morikawa F., Mizuhira V., Marsden C.D., Moggi A., Manzelli P.,  MacCarty P., MacColm R.L., Mazzonti G., Manske R.H.I., Millott N., Mulay I.L., Mulay L.N., Martino L., Moss S.C., Marks M.S., Morris-Jones R., Matsubara J., Manning J.T., Matsui S., Manning J.T., Medhioub K., Murakami N., Mondal M.S., Matsukura S., Maes A., Mesquita R.M., Melo E., Murdoch I.E., Miyazaki Y., Mieda M., Miller S.A., Maho Y.L., Morimoto K., Milne C.J., Marneros A.G., Mao J.D., L. Meyskens F., Marks M.S.,

N

 

  Natta G., Nassau K., Nakagawa A., Nalwa H.S., Nishihira J., Newmann P.R., Nicholls E.M., Norman P., Nicholson J.M., Nishihira J., Nirasawa T., Napolitano A., Negri F., Natanabe S., Nishina Y., Nakanara N., Nicolaus R.A., Nicolaus G.,Nicolaus B.J.R., Nicolaus B., Novales R.R., Nyhlen L.E., Novellino E., Nardi G., Nicolson G.A., Narni G., Napolano E., Nicholls E.M., Nogurhi S., Nicol J.A.C., Nakayasu M., Nicholson J.M., Nieoullon A., Netsky M.G.,  Nitti D., Nosanchuk J.D., Nestler J.S., Nelson J.S., Nasri M., Nakazato M., Naffrechoux E., Nosanchuk J.D., Nilsson S.E., Nakamura K., Nosanchuk J.D.,

 

 O

 

Organisciak D.T., Okkawara A., Okun M.R., Ortonne J.P., Omote Y., Oikawa A., Okazaki K., Ota

S., Ostrovskii  X., Ovchinnikova O.A., O’Melia C.R., Oudart H., Olsen B.R., Oberg G.,

 

 

P

 

Pagani G.A., Pandey P.C., Perluigi M., Pucci R.,  Prassides K., Prodolliet T., Paloheimo J., Papavassiliou G.C., Paus R., Pavel S., Palumbo A., Percival N.C., Peter M.G., Prota G., Pezzella A.,  Plummer E.W., Pilowa B., Peristein J.H., Pennock J.L., Polla L.L., Peters H.K., Pieroni A., Puhalla J.E., Parisi G., Pullman A., Pullman B., Pigott F., Piscitelli C., Peterson E., Parks R.D., Polis B.D., Piattelli M., Panizzi L., Patel A.R., Pawelek J.M., Parakkal P.F., Palumbo A., Potts A.M., Piette L.H., Patil P.N., Persad S., Petrillo O., Pridham J.B., Pake G.E., Pathak M.A., Proctor P.H., Pritchard R.G., Pasenkiewicz- Giezula M., Pirie A., Prasad K., Park B.E., Potokin I.L., Piccolo A., Petrier C., Perminova I.V., Pugliese A., Pracht J., Patterson L.M., Pernot P.,

 

Q

 

Quevedo W.C., Quilico A., Qadeer M.A.,

 

R

 

Rabenaus A., Ralph C.L., Rimington C., Rubaw E.L., Rast D.M., Rowley B., Rosengren E., Rorsman H., Rosdahl I., Riley P.A., Rubin M., Rosengren A.M.,Ruffo A., Robertson A., Rienils K.G., Rebell G., Rizzotti M., Roy S., Rothman S., Reid T.W., Riento G.,  Reitz D.C., Rudolf P., Raynolds E. S.,  Rapi S., Roberts J. E.,  ., Rossini S.,  Robinson  G.M., Reuther  U., Ruani G., Rosseinsky M.J., Rihault M., Rosei M.A.,  Rowe J. E., Ruud K., Ricca A., Robson  N.C., Romberg H., Raposo G., Rudnicki M., Roffler-Tarlov S., Riederer P., Rigane H., Reyes M.G., Rydman R., Rosenstiel P.,  Roulin A., Rosenstock B., Riediger T., Rechkemmer G., Raclot T., Raposo G., Roberts J.C., Rollins D.E.,

S

Stout G.L., Seiji M., Santacroce C., Sica D., Stix H., Stix M., Swan G.A., Steussi H., Szent-Gyorgyi A., Sams W.M., Shimada H., Sokolski  T., Salazar M., Scarpati R., Scherillo G., Sugiyama N., Scoffone E., Stravs- Mombelli L., Sealy R.C., Succi G., Swartz H.M., Sidles P.H., Sarma T., Shimazu T., Schmidli B., Sodano  G., Spinella A., Stipanovich R.D., Swift R.S., Sturm K., Stone T.J., Sciuto S., Seraglia R., Schrieffer J.R., Simmons J.E., Steelink C., Sever R.J., Sidles P.H., Stephens R.B., Sacli O.A., Simpson A.W., Sandam D.J., Stratton K., Sehultz T., Schultz T.D., Salmon M., Strzelecka T., Slawinska D., Slawinska J., Slawinski J., Skotheim T.A., Stephens R. B., Somogyi  A., Sandman D.J., Seiberg M., Shirley L.M., Saffaro L., Smgyth M.R., Stubb H., Simon J.D.,Shepard R.S., Smith N.P.M.,Simmons J.G., Seraglia R., Schmidt C.E., Suzuki M.,  Sharlow E., Shapiro S.S., Schultz T.D., Slawinski J., Sakamotlj M., Slominsk A., Schinina M.E., Siringo F., Schrodinger E., Sctt A., Sandford S.A., Scheibe G., Sugimoto H., Schiavolin M., Samuelson D.A., Sabbatini L., Shimao K., Seybold P., Saito G., Sandford S.A., Spinelli N., Simpson R.T., Stachelberger  H., Shibata T., Salvi P.R., Sariciftci N.S., Solano F., Smith M:R.,  Stubb H., Schiavolin M., Selkirk M.E., Smalley R.E.,  Salinas C., Sohmen E., Senaris R.M., Seoane L.M., Simon J.D., Sarna T., Stark R.E., Stepien K., Simon J.D., Sugita T., Shinoda T., Shimizu Y., Spanier J., Schallreuter K.U., Sulaimon S.S., Schimidt S.L. Shao H., Sun D., Sun S.L., Skellern G.G., Shimada M., Shimbara T., Sakurai T., Shioda S., Sievers J., Subramanian V., Sita L.V., Simon M., Suhn Y.L., Song S.Y., Shaw G., Saada A., Slawinski J., Sawada A., Schlautman M.A.,  Simpson M.I.,  Sundelin S.P., Schmidt-Rohr K., Stepanova E.V., Shahandeh B., Sindhu S.S., Sharma H.R., Senar J.C., Scholer  H.F., Soulard R., Stoyanova I.,

 

T

 

Thomas M., Traldi P., Towsend J., Tollin G., Terry A.L., Trukhan E.M., Tucker-Abbott R., Thomson R.H., Tarasov B.P.,Thathachari Y.T., Temussi P.A., Thivolet J., Tegner E., Takahashi H, Theos A.C., Tian S., Tian H., Takahashi J., Thody A.J., Tobin D.J., Thiyagarajan P., Turick C.E., Tisa L.S., Tiquia S.M.,  Toshinai K., Terashima M., Tanaka S., Tramu G., Tillet Y., Ticknor L.O., Tadokoro T., Tatsumi K., Tipping E., Tohidian N., Takeo K., Tian R., Tenza D., Theos A.C.,

 

U

 

Uesugi T., Uemura T., Urahe K., Urzi C., Uno S.,

 

V

 

Venkataram K., Valencia J., Vekey K., Vincent J.F.V., Vietra W.D., Vermeer B.J., Vas G., Vogliardi S., Visioli F., Viator J.A., Vitzthum F., Vinodgopal K., Vancluysen J., Van Rensburg C.E., van Riemsdijk W.H., Vidotto V.,

 

W

 

Wolbarsht M.L., Walsh A. W., Weger M., Whitaker D.W., Wortsman    J., Walatka V., Whitley R.D., Wakabayasni T., Wudi F., Willis J.M.,  Willson J.H.M., Walton D. R. M.,  Wollenberger U., Wallace G. G., Willie W., Wang Z.X., Weyl C., Wong J.Y., Wright P.G., Weeks G., Wakamatsu K., Wohrle D., Winder A.J., Wilczok J., Wilczok A., Wilgram G.F., Whittaker J. R., Wilcher M., Wyler H., Woodhead S., Williams- Smith D. L., Wolfram L.J., Wehrli P.A., Waters W.A., Wertz E., Walter W.G., Wigner E. P., Warren B.E., Webb H., Wakamatsu K., Wilczok T., Wilkzok A., Wakamatsu K., Weinert E.E., Wilson C.G., Wang Q.P., Wang C.C., Wilms H., Wheeler M.H., Willie J.T., Whitham T.G., Wakamatsu K., Wilen B.M., Wu Z.,, Wang X, Wihlmark U., Walker L.P., Wilkins D.G.,

 

X

Xing B.,

 

 

Y

 

Yamaoka T., Yoshizaki H., Young T.E., Yamagashi F.G., YoshizakiH., Yee G.T., Yoshida H., Yang W., Yamashita F., Yakushi K., Yacobson B.Y. , Ye T., Yan B., Youdim M.B., Yip W.W., Youngchim S., Yudintseva N.M., Yurlova N.A., Yu K.C., Yanagisawa M., Yamaguchi Y., Yoon T.I., Yamaguchi K., Yoon J.,

 

Z

Ziegler I.G., Zanetti l., Zahlan A.M., Zito R., Zeickson A.S., Zeller H.C., Zvaifer N., Zeuli L., Zongo A., Zajac G.W., Zambonin P.G., Zheng L.S., Zambounis J.Z., Zhang Z., Zhang Y., Zajded A., Zuppiroli L., Zeise L., Zerbetto F., Zamboni R., Zschack M., Zerpner D., Zanasi R., Zisk M.B., Zhizhin G.N., Zakhidov A.A., Zucca F.A., Zecca I., Zajdel A., Zajac G.W. Zipper H., Zecca L., Zmudzka B.Z., Zhong S., Zheng H., 

 

 

###################################################

 

Link 13 E-mail office

Per domande  relative alla materia nera BCM (Black Cell Matter) e BSM (Black Synthetic Matter) rivolgersi a :

 

bruno.nicolaus@virgilio.it   (biochemistry)

mario.piattelli@poste.it        (chemistry)

rnicolaus@tightrope.it         (chemistry)

parisi@unina.it                      (zoology)

bologne@unina.it                 (chemistry)

scherillo@unina.it                (chemistry)

bnicolaus@icmib.na.cnr.it   (biochemistry) 

giancarlo_nicolaus@merck.com (biochemistry)

drp@drproctor.com              (conductivity)

drjem3@netscape.net           (conductivity)

crippa@fis.unipr.it                 (solid state)

mirella.bridelli@fis.unipr.it    (solid state)

 

 

#######################################################################

Curious Papers,  Forum,  Pamphlets, Propaganda, Social, Story, Stories,  Comments .

 

 

Forum di discussione

Per rispondere alle lettere già pubblicate o per proporre nuovi temi di discussione, inviate una e-mail all'indirizzo: DCSB__Forum@hotmail.com


Roma, 17 Ottobre 2000

Sono uno studente di Chimica, con indirizzo "Chimica dei Sistemi Biologici", presso l'Università degli Studi di Roma "La Sapienza". Inizio ora il quinto anno di corso, devo ancora sostenere tre esami e ho iniziato il lavoro sperimentale di tesi. Sono stato molto contento di apprendere che la Società Chimica Italiana ha una Divisione di Chimica dei Sistemi Biologici, in quanto già da diverso tempo ho avuto modo di sperimentare in prima persona le difficoltà, come chimico, di interessarmi ai sistemi biologici. Non so se si tratta di una realtà limitata all'università che frequento, ma sta di fatto che la maggior parte dei professori più influenti all'interno del Dipartimento di Chimica non vedono di buon occhio questo indirizzo e gli studenti che lo seguono, e di conseguenza, in più occasioni, io e i miei colleghi di corso abbiamo avuto motivo di sentirci considerati chimici di "serie B", perfino da parte di alcuni colleghi degli altri indirizzi. Io sono molto soddisfatto del percorso formativo che sto svolgendo e non mi sento affatto un "biologo mancato", come mi sono sentito più volte definire dai professori di cui sopra, però sono un po' preoccupato per queste incomprensioni tra chimici e biologi, in cui rischio di rimanere schiacciato. Più vado avanti negli studi e più prendo consapevolezza del fatto che, a mio modesto parere, la Chimica dei Sistemi Biologici ha una sua ragion d'essere come studio delle basi molecolari della vita e dei processi che ne sono alla base, senza per questo doversi sovrapporre alla Biochimica o alla Biologia Molecolare, ma anzi integrandosi con esse, e senza necessariamente limitarsi alla determinazione di strutture di macromolecole biologiche o alla sintesi di molecole a potenziale attività biologica. Un chimico dei sistemi biologici, pur curandosi di avere delle solidi basi di Biologia, deve dunque, secondo me, trovare la propria identità, distinta da quella del biologo molecolare o del biochimico, sia sul piano scientifico che "politico". Già in pochi mesi di lavoro sperimentale per la tesi, diviso tra il Dipartimento di Chimica e il Dipartimento di Biologia Molecolare, ho avuto modo di constatare le incomprensioni, spesso proprio a livello di linguaggio, tra i due dipartimenti e il ruolo di intermediario che quindi un chimico dei sistemi biologici può ad esempio avere. Se dovessi cioè dare una definizione professionale e scientifica del chimico dei sistemi biologici, direi che potrebbe essere colui che è in grado di capire il problema biologico e impostare il progetto di ricerca con tutte le competenze chimiche che gli sono proprie. Tutto questo si inserirebbe bene nelle collaborazioni interdisciplinari (dove poi chimici organici, chimici fisici, biologi molecolari, medici, ecc... porterebbero le proprie specifiche competenze). Collaborazioni che però in un mondo accademico dove spesso ognuno cura solo il proprio orticello sono spesso difficili da attuare. Recentemente, proprio nel curare queste pagine Web, ho avuto modo di constatare, ad esempio, che in molti atenei italiani non è previsto che uno studente di Chimica possa seguire un certo numero di corsi a Scienze Biologiche, limitando la propria formazione biologica ad un esame di Chimica Biologica. Ora, sebbene sia sempre possibile, a proprie spese, recuperare nel tempo tali lacune, come è pensabile che al giorno d'oggi un chimico possa occuparsi di sistemi biologici, senza avere le opportune basi di biologia molecolare e di ingegneria genetica?

Spero ardentemente che questa Divisione possa farsi carico, con successo, non solo di attivare tutta una serie di iniziative atte a coordinare, tenere in contatto e far incontrare persone che, nei propri campi specifici, contribuiscono allo sviluppo della Chimica dei Sistemi Biologici, ma anche e soprattutto di sensibilizzare, all'interno del mondo accademico, studenti, ricercatori e docenti, a tematiche di interdisciplinarietà (unico elemento che, a mio avviso, può indirizzare verso una ricerca scientifica competitiva, rispetto ad altre realtà internazionali, e all'avanguardia, pur rimanendo nei limiti delle risorse disponibili), anche attraverso la promozione e il sostenimento di collaborazioni interdipartimentali e interuniversitarie.

Marco Franceschin


22/10/2000

Anch'io studio chimica all'Università di Roma "La Sapienza"; sono appena al secondo anno, quindi penso di conoscere troppo poco l'ambiente universitario per dare giudizi. Tuttavia trovo senz'altro assurdo che la scienza debba avere dei settori di serie A ed altri di serie B. Personalmente penso mi interessino altri rami della chimica (non i sistemi biologici), ovviamente convinta di dover fare ancora molta strada rima di poterlo affermare con certezza, ma credo fermamente che tutti gli indirizzi della scienza debbano collaborare per un unico fine: il progresso. Spero che molto concordino con me sull'inutilità, per non dire sulla dannosità, di tali rivalità. Invece di collaborare ed integrarsi per migliorare la vita umana, c'è una sorta di "gara" al prestigio: tutto ciò dovrebbe farci riflettere ed impegnare affinchè tutto ciò si modifichi. Queste situazioni mutano se muta il modo di pensare della gente. Per concludere, appoggio in pieno questa iniziativa, sperando di poter intervenire nuovamente a questo forum, per discutere anche di argomenti scientifici: anche se non sono forse molto preparata, tali argomenti mi appassionano moltissimo.

Roberta De Carolis

 


From: Rodolfo Nicolaus (rnicolaus@tightrope.it)

 

"materia nera importanza nei sistemi biologici"

 

Sono un professore in pensione. Recenti studi (www.tightrope.it/nicolaus/index.htm) sono forse meritevoli di dibattito e di nuova ricerca di base. Le nuove conoscenze acquisite sulla materia nera aprono nuove prospettive ai sistemi biologici (melanine, neuromelanine, melanomi, feomelanine, acidi umici). La loro natura di polichinoni idrati e di radical-polaroni rendono questi sistemi dei conduttori elettrici, dei principi di tensigrità, dei trasportatori di acqua e gas. Essi sono i più importanti sistemi della futura era post-enzimatica.

 

Molti saluti, R. Nicolaus.


 From: <leone@tiscalinet.it>

 

"materia nera importante?"

 

L'ex professor Rodolfo Nicolaus dice che le melanine rendono i sistemi biologici dei conduttori elettrici. E allora? Poi parla di era post-enzimatica strillando al delirio più convulso!!! Quanto guadagna un ricercatore in Italia??? Quanto prende un dottorato di ricerca??? Ed i contributi pensionistici dove li mettiamo? I problemi occupazionali per chimici, biologi e naturalisti? Con la sua PENSIONE il professor Nicolaus ha abbastanza fondi per finanziare la sua ricerca! Altro che era post-enzimatica! Qui si tratta di era anti-ricerca dovuta al malsistema moderno con cui si gestisce la ricerca scientifica e tecnologica. E tutto questo è dovuto proprio a personaggi come l'ex (per fortuna) prof. Nicolaus...

Franco Leone


From: alex@hotmail.com

 

Materia nera la vedo nera...

 

 

17/10/2001

Sono un chimico da poco laureato alla ricerca di qualche borsa di studio
e, guarda caso, l'argomento di mio interesse è "la materia nera" di cui
parla il professor Nicolaus, avendo svolto una tesi sulle melanine.
Avendo trovato nulla sull'argomento, grazie a questo forum, mi sono
rivolto a lui (che è un esperto in materia) per un consiglio ma, a
quanto pare, egli stesso sembra il primo a disinteressarsi. Come è bello
dire "armiamoci e andate"... specie poi quando il quadro della ricerca
scientifica in Italia si presenta alquanto penoso. Chissà se il
professore ci dirà chi lo ha ridotto così...

Un saluto prosternato a tutti i baroni della ricerca


Un cervello in fuga
Alessandro Righi

#######################################################################

 

The hypothesis is advanced ( F.E.Barr ,Med. Hypothese, 11, 1-139, 1983 )  that melanin ( in conjuction with other pigment molecules such as the isopentenoids ) functions as the major organizational molecule in living system.Melanin is depicted as an organizational trigger capable of using established  properties  such  as photon – (electron)-phonon conversions, free radical –redox mechanisms, ion exchange mechanisms, and semiconductive  switching capabilities to direct energy to strategic molecular systems and sensitive hierarchies of protein enzyme cascades. Melanin is held capable of regulating  a wide range of molecular interaction and metabolic processprimarily  through its  effective control of diverse covalent modifications. To  support the hypothesis , established and proposed  properties of melanin are reviewed  (including the possibility that  (neuro) melanin is capable of  self-synthesis ). Two “melanocentric systems “ –Key molecular   systems in which melanin  plays a  central if not  controlling role-are examined:

1)   the melanin –purine-pteridine  (covalent modification ) system and

2)     the  APUD (or diffuse neuroendocrine ) system . Melanin’ s role in embryological  organization and tissue repair /regeneration via sustained or direct current is considered in addition to its possible control  of the major homeostatic regulatory systems- autonomic, neuroendocrine, and immunological.

 

      

############################################################

 

Black body

 http://www.angstromprod.com/xfiles/extras/black %20body.html

 

Black body, in physics,an ideal black substance that absorbs all and reflects none of the radiant  energy falling  on it  Lampblack, or powdered carbon, which reflects  less than 2% of the radiation falling  on it approximates an ideal black body  Since a black body is a  perfect absorber  of radiant energy , by  the laws of thermodynamics it must also be a perfect emitter of  radiation. The  distribution according to wavelength  of the  radiant energy  of  a black body  radiator depends on  the  absolute temperature of the black  body and not  on its internal  nature or structure . As the temperature  increases, the wavelength at which the energy emitted per second is a maximum decreases . This phenomenon can be seen in the  behavior of an  ordinary  incandescent  object, which gives off its maximum radiation  at  shorter and shorter wavelengths as it  becomes  hotter and  hotter. First it  glows in long red wavelengths then in yellow   wavelengths, and finally in  short blue wavelengths. In order to explain the spectral distribution  of black body radiation, Max Planck  developed the QUANTUM THEORY in 1901 . In thermodynamics the principle  of the black body is used to  determine the nature and amount of the energy  emitted by  a  heated object . Black-body radiation has served as  an  important source  of confirmation for the big –bang theory , which holds that the universe was born in a  fiery explosion some 10 to 20 billion years ago.  According to the theory, the explosion  should  have  left  aremnant  black-body cosmic background radiation that is uniform in all  directions and has an equivalent temperature of only a  few degrees  Kelvin . Such  a  uniform background, with  a  temperature of 2.7K (see KELVIN TEMPERATURESCALE), was discovered in  1964 by Arno A. Penzias and  Robert L.Wilson, who were awarded the Nobel Prize in Physics in 1978 for their work. Recent data gathered by the NASA satellite Cosmic Microwave Background Explorer (COBE) has revealed small temperature fluctuations in the radiation  that are thought to be related to the  “seeds “of stars and galaxies.

 

####################################################################

MELANIN:The key to Life

 

by Malik  Anwar Aten – Ra

 

http://www.ixpres.com/ntruth/melanin.htm

 

What is Melanin? The word Melanin is derived  from the Greek word – Melanos which means black  Therefore the “mel” means black and “anin “  is derived from the word amine. Amine is a nitrogen based  group derived from  ammonia (NH3) and is designated  in chemistry as ahydrocarbon amine when it is attached to a hydrocarbon. 

How is Melanin produced ? Melanin is produced in highly specialized cells called  Melanocytes. Melanin is produced inside the  melanocytes by a smaller species called the melanosome.  Melanosome is a highly specialized  compartment of the melanocyte inside of which    Melanin is made and store.  The  manufacture of  Melanin in the skin and various organs throughout the body of the human depends on  a  catalyst (battery ) located within the melanosome. The catalyst or battery   provides the necessary  energy  to convert smaller  chemical units into Melanin . The concentration or degree of blackness throughout  the  body of  a  person  depends on the  catalyst concentration  , catalyst  electrical charge and  melanin type. This degree of blackness can be further  enhanced  above and beyond the genetic basis  by the action  of solar radiation (sunlight ,U.V. light , cosmic  rays, etc.) and  other chemicals utilizing  the  Melanin producing  catalyst within the melanosomes .

Why is Melanin black ? “Blackness “ is a divine, cosmic principle of the Universe  Black is the meaning  of  Kem or  Khem- the  name  which the ancient  Kemetic  people call themselves . Ffom  this word we get  “chemistry ,” the study of the building blocks  of life. Life is founded  upon carbon, the black  element  present in all  living  matter .Black  carbon Melanin  is black simply  because its chemical structure will not allow any type of energy to escape once that energy  has come into contact with its structure.Melanin behaves similarly to a ‘’ black  hole ‘’ .Black carbon atoms link to form Black Melanin, which has black hole properties.These ‘’ black holes ‘’ properties   are at work in the electron, as proven by Nobel prizewinner, Richard Feynman The electron is responsible for all ‘’ Khem-ical ‘’ changes in matter.

 

Where melanin is found ?. Melanin is responsible for the pigments that colors the skin and hairs.Melanins also concentrated in the heart, eyes, ears, skin, pineal gland, pituitary gland,liver, arteries, testicles and the ovaries in the human body.

 

Why melanin is important ?. Melanin is necessary in order for humans to produce.It is present at the inception of life ( a Melanin sheath covers both the sperm and the egg ) ; Melanin can rearrange its chemical structure to absorb energy ( sunlight, music, radar, X-rays, etc. ) and can trasfere and store energy for later use.This is why people with highly melania skin have the ability to feel  music ( ryth ) and withstand the sun rays more than white people.This means that the person with dark skin can charge up their Melanin iust by being in the sus or around the right type of musical sounds or other energy sources.

 

Why is the scientific evidence of Melanin withheld ?. After considering Melanin to be a waste product of body metabolism which supposedly served no useful function in the body,western science has now discovered tha Melanin is the chemical key to life.In a excerpt from a interview with Dr. Richard King, by Discovery magazine King stated that ‘’ Western science is facing the sobering reality that by it own self-defined standards, highly melania  individuals are probably superior to lighter skin individuals in both intellectual potential and muscle coordination.And the central role that Melanin plays in the body has been suppressed to maintain the mythological inferiority of colored people ‘’

The superiority complex of white people is a defense mechanism and mask for their deep inferiority complex which they project onto people of color.If whites really believe that white skin is superior,then why is tanning so important in white culture despite its known health risk ? . It is the white female who tells you that her ideal mate is ‘’ tall,dark and handsome ‘’.Dark indeed refers to more Melanin.

 

#########################################################

 

H.Z.Hill ‘’ The function of melanin or six blind people examine an elephant ‘’

Bioessays 14, 49-56, 1992.

 

The pigment melanin is found  all  living  kingdoms  and in many different   structures  and  forms . When its various functions  are examined separately, its behaviors seem disparate and conflicting. It has a clear  role in camouflage  and sexual display . Other  major roles are examined critically. It can act as a sun  screen but is not a  very  effective one .It can also scavenge  active chemical  species, but this, too, is not done  very  effectively. It produces active radicals  that can damage  DNA.It binds to drugs in ways that are either beneficial  or  deleterious. Aside from camouflage, its other roles can be  brought  together  by  a  unifying  hypothesis as first  proposed  by Proctor  and  McGinness  nearly 20 years ago.  Melanin is envisaged  as an energy  transducer  with the properties  of an amorphous semiconductor . It  can absorb  many different types of energy and  dissipate  them in the form of heat . However, if the energy input is too great , the output  can be expressed in the form of activated chemical  species that can  damage cellular macromolecules resulting  in call death, mutations and cancer.  The  protective aspect of melanin in dark skin is seen as resulting  from its high  concentration and its confinement  to ellipsoidal and densely packed organelles  that  can effectively shield the nucleus. In  light  skin, its radical  nature is seen as potentially  participating in the  carcinogenic  process, particularly when  overwhelmed by intense  episodes of sunburn.

 

################################################################# 

 

 

 

 

 

 

 

From Melanin Google 2004

 

 

 

Few people know that Melanin is found in almost every organ of the body and is necessary in order for the brain and nerves to operate, the eyes to see, and the cells to reproduce!
Thus, melanin is vastly more than just a "pigment" coloring the skin and hair. At the core of your brain is the "locus coeruleus," a structure that is black because it contains large amounts of Melanin which is essential in order for it to operate! In fact, all the most crucial brain structures are heavily melanized! "Brain melanin is concentrated in a region that functions as a gate for all sensory, motor, emotional and motivational input and output" as well as a region that mediates conscious awareness in general. Dr. Richard King considers the presence of melanin to be a key agent in heightening psychic sensitivity in the human organism. Dr. Frank Barr suggests (neuro)melanin may join forces with the glial cells (formerly seen as only the 'glue' of the nervous system) to form a subtly triggered matrix for mental organization­ that is, the "mind's eye."

Melanin in the Brain increases from the lower
primates and reaches its peak in the  HUMAN
..

 


.
Mmm.
mm.

 


 


Melanin is abundantly present at the inception of life: a melanin sheath covers both the sperm and the egg! In the human embryo, the melanocytes (skin pigment cells), the brain, and the nerve cells all originate from the same place; the neural crest. Melanocytes resemble nerve cells and are essential for conveying energy. When the presence of melanin is missing or insufficient in the ectoderm, this causes the mother to lose her baby; in the case of all whites, a defective baby is produced.
.

.
Dr. Frank Barr, pioneering discoverer of melanin's organizing ability and other properties, opens his technical work, melanin: The Organizing Molecule: "The hypothesis is advanced that (neuro)melanin (in conjunction with other pigment molecules such as the isopentenoids) functions as the major organizational molecule in living systems. Melanin is depicted as an organizational "trigger" capable of using established properties such as photon- (electron)- photon conversions, free radical-redox mechanism, ion exchange mechanisms, ion exchange mechanisms, and semiconductive switching capabilities to direct energy to strategic molecular systems and sensitive hierarchies of protein enzyme cascades. Melanin is held capable of regulating a wide range of molecular interactions and metabolic processes..."
.

 

 .

 Melanin can convert light energy to sound energy and back again!

Melanin is black because its chemical structure allows no energy to escape. It is also black because black is the perfect absorber of light and all energy frequencies, making black melanin the super absorber of Energy and Light! Thus scientists describe it as acting like a "black hole."

Melanin can rearrange its chemical structure to absorb all energy across the radiant energy spectrum (sunlight, X-rays, music, sound, radar, radio waves...) ­and can transmute and store this energy for later use!

Melanin can absorb a great amount of energy and yet not produce a tremendous amount of heat when it absorbs this energy, because it can transform harmful energy into useful energy. Melanin can absorb tremendous quantities of energy of all kinds, including energy from sunlight, x-ray machines, and energy that is formed within cells during the metabolism of cells. He theorizes that melanin has the ability to neutralize the potentially harmful effects of these energies.

In Dr. Frank Barr's theory, matter is shaped and structured by light: that is, matter is organized through the interaction of molecules composed of slowed-down light. These molecular [Melanin] combinations "eat" light in order to maintain, expand and evolve matter. The more highly evolved a species, the more complex its biological capacity  to use light.

 

 

Melanin has superconducting properties; it shows evidence of being a room-temperature (biological) super-conductor. Normally, superconductivity occurs only at very low temperatures.

Melanin is like a battery. melanin "may be viewed as a battery that is partially charged and can always accept an electrical charge!" 1 When sunlight or other energy comes in contact with the melanin battery, it increases the charge of the battery to a certain degree. When the energy is captured, the battery has more energy to use in the body. "This means that the black human can charge up his melanin just by being in the sun or around the right type of musical sounds or other energy sources."

 

Melanin in the eye receives light and converts it into the electrical      energy that comes across as an image.

 

 


 

 

 

 

######################################################

 

MELANIN

MAD writer production

Members.tripod.com

 

 

Melanin is important because it is the most primitive and universal pigment in living organisms. Melanin is produced  in the   pineal gland. Abundantly found in primitive organisms such as fungi,  as  well as advanced  primates. Furthermorewithin  each living organism,  melanin appears to be  located in the major functional sites. For example, in  vertebrates, melanin is not only  present in the skin , eyes, ears, central nervous system, it can also be found in the pineal gland, pituitary gland, thyroid gland, thymus gland, adrenal gland, and the barathary gland . Melanin is abundantely present in the viscera , including the heart , liver, arteries, the  muscles, and the gastrointestinal tract. Thus, within each and every living  organ which aids the human body  melanin appears. Regardless of what color your skin appears to be all genes in all creatures on this planet  are black because  they are  coated  with melanin. The  amount of melanin in the skin is one of the most variable of human traits, and  many  polygenes  are involved. Groups of   people or the  population of  the world were  once classified according  to the  skin shade:  Black (Nubians), White (Caucasians), Yellow (Orientals) and Red (Native Americans) etc.. We must   re-alize  that just because  this is the way they have classified people does not mean this is the way it should  be . The hues of  color  of  your skin depends  on several factors.  First is the  amount of melanin in the outer layers of the skin.  Melanin acts as a filter to prevent  damage to the  delicate deeper layers of the skin, by penetration of ultraviolet light.  There are more than one type of melanin.  You   have  brain  melanin, also known as neuromelanin  , and you have skin melanin. Neuromelanin does not run parallel with skin melanin.Whether white, red, yellow, black or brown, neuromelanin, plays an important role in functioning of the brain, and nervous system. Melanosomes ( small structures within the melanocyte cells  where melanin is synthesized) find their way into the hair cells , giving them color..(Two types of melanin,one dark brown and one red, are responsible for all hair shades ).

Pigment that contribute to skin color are called carotene, a yellowish hemo-globin,  in blood  vessels (pink-red), and melanin (black, brown, red).  Darker skins are dominated by melanin, which is produced from the amino acid tyrosine, by pigment cells (melanocytes) in the skin . Melanocytes  are  characterized by long, fixed  extensions of the oute cell membrane. In humans, other mammals, and  birds, melanin is dispersed permantely  throughout each melanocyte, include- ing the  extensions, and is also , transported to nearby skin cells. In other words , if you increase the amount  of melanin  in  the  skin  you become  darker  and vice  versa.  So what is so  important about  melanin? Melanin controls all mental and  phy- sical  body  activities. Melanin  is  an  extremely   stable molecule,  ( easily degraded by oxygen and hydrogen peroxide note of Nicolaus  ) and  highly resistant to the  digestion by  most acids and  bases, and is one  of the hardest molecule to ever be  analyzed. If you do not purify melanin  molecule, you will not  heal  your body of diseases.  In parts of  Africa, India, and  Australia the deposits of melanin  in  the skin  is  heavest  because the  people  have been  exposed to the  most  intense  sunlight for generations. Northern  Europeans have  the least  amount  of deposits in their skin are  lighter, not  to  mention  their weather is cloudy and  cool .The thick –ness of the outer  layer of the skin  is also  a  factor . People  with  darker  skin  complextions  have  thicker  layers  of  skin .  And  this is  a  factor  alone  enhances  the skins  flitering  effect .The thinner the  skin  the least  melanin.  When the skin is very thin, the  blood  vesels  show  through  and give a pinkish  color .  When an individual  adapts to the shifting of the intensity  of the  sunlight, the skin  becomes  darker  because they are exposed to more sunlight.  That’s how you get  suntans  because it ‘s the  result of both  thickening and increasing the melanin in the skin.  Keratin is  the substance the nails  of  the fingers and toes are made of. It also  appears in the  outer layer of the  skin.  When ker- atin  deposits are heavy, the skin has a yellowish, brown shade,as in the  Mongolian  populations. They have adapted along  a  different  pathway to avoid  the damaging  effects of  ultraviolet light.  The  reddish  hue of the  Native Americans  results  from a combination  of  keratin  and  melanin  deposits . Now, you might be asking yourself  what  does melanin have  to do with  ultra- violet light? Well, the  DNA  molecule are all  covered  with  melanin.  One of the things  that  melanin does is it actually  absorbs ultraviolet   radiation. Melanin is constantly  reaching out  towards the  ultraviolet   rays of  the sun. Ultraviolet   radiation  has  been  found to be  dangerous  to  protein.  When   protein is  passed  through  ultraviolet  radiation  it actually  causes the molecule to blend. Just like you have some of  our sisters and  brothers who go to hair dressers , killing their ethers just to get their hair done. No  offense  to those who do this type of activity so don’t go off the deep end with me. I’m not here to  tell you what you should  do or not do  because you have  your own mind  but if you  choose to go to  hair dressers and get up under these strange lights and you have to wear a special kind of  glasses  with it because of the  ultraviolet  radiation.

When your ethers are exposed to the chemical or protein  structure in those perms and tents it  causes it to lock into a certain position , then your hair will not change . That’ s the same thing that  happens to your  chromosomes or genes.  When ultraviolet rays are exposed to the chromosomes or  the genes, in order for your genes to be able to do what they are suppose to do naturally, they have  to be able to change .But when they are exposed to ultraviolet radiation they can’t.  Thus when the time or need comes for it change they will not be able to change. This will result in deformities in your body.  Melanin can also be toxic.  Eating the improper foods or overeating  can black your connection with  the sun energy’s. When the sun’s energy cannot reach the melanin, diseases  manifest. Melanin is  deranged  only when it becomes toxic.  Any individual who might have toxic melanin will act in a very similar  manner  , that  which  is primitive, animalistic, and barbaric.  It is a civilizing chemical  when  it is not  toxic.  It has physical properties, and personality traits, which distinguishes  it from  others.  That’s why our bodies is  dedi- cated to making melanin.  Vitamin B keeps melanin clean., not to mention good eating  habits. If you want to continue to comsume pork , smoke  weed and drink  alcohol that’s your own business but your body is dedicated  to making  melanin, thus if you make it toxic , you’re only  hurting  yourself. Melanin is like a  superconductor,  or like a battery in a  car. It always stay charged when it is exposed to things such  as light, sound, color , and sun light . It will absorb it to the point where the melanin will actually  absorb the additional  energy and  recharge  it – self  to a new level .  Your body hs  committed itself  to creating  melanin  so you  can survive. The mel- anin in  your body  is always partiall charged.  When you look around things like sound ,light , sun light , or colors , the  melanin will absorb the additional  energy, and recharge itself, taking your body to a another level .  If you’ re  around that aren’t good for you your  body reacts  to it . Your melanin can convert  light energy to sound energy, that’s why an entertainer  like  Michael  Jackson, who was a  big hit  back in the days.  What he was doing  was using his  melanin  to convert light  energy to  sound   energy. Now that he is lacking  melanin  he hasen’t  been able to  really get a big hit like  in the past.  People  with melanin are walking radios and the very dark skinned people are very  sensitive to the  different types of radio frequency or thought patterns that are in the environment.  So everything  you do , everything you listen to, everything you eat , affects you .  It  affects your melanin.

 

 


 

 

 

#######################################################################

 

 

Melanin : The pigmented truth

By Carolyn J.Fisher

 

Because this is a paper written by a beginning student as an assignment, there are no guarantees that everything is absolutely correct and accurate.

In view of the possibility of human error or changes in our knowledge due to continued research, neither the author nor The University of Iowa nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from the use of such information. Readers are encouraged to confirm the information contained herein with other sources.

 

                              

The University of Iowa , Iowa City , IA 52242-1181 For 77:222,  13. March 2003

Abbreviations:

DC, Dopachrome

DHI, dihydroxyindoles

DHICA, 5,6-dihydroxylindole-2-carboxylic acid

DOPA, 3,4-dihydrophenylalinine

DQ, DOPA quinone

EPR, electron paramagnetic resonance

RPE, retinal pigmented epithelium

UV, ultraviolet

 

 

 

 

 

 

 

 

 

Abstract:

 

Natural melanin, a pigment produced in melanocytes, does not have a unique structure but comprises a class of conjugated polymers that are commonly referred to collectively as melanins.

Melanins (eumelanins and pheomelanins) are synthesized from a two-electron oxidation process involving tyrosine catalyzed by the enzyme tyrosinase. They contain both in vitro and in vivo free radicals that can interact with hydroxyl radicals, singlet oxygen and superoxide. In humans, melanins are thought to play an important role in photoprotection based on their radical scavenging abilities, especially true of eumelanin. On the other hand, they can also be degraded by oxidations induced by superoxide to produce reactive species such as semiquinones. Since all known melanins contain stable organic free radicals, they can easily be detected by electron paramagnetic resonance spectroscopy. Continued research into the interactions and detection of melanins will advance the studies forward to aid in the determination of their true relevancy as physiologically important cellular protectors.

 

Introduction:

 

 

Melanins are naturally occurring pigments found in animals and plants. They are complex heterogeneous polymers whose chemical structure has not been satisfactorily determined There are two major classes of natural melanins, the black-brown eumelanin found in human black hair and in the retina of the eye and the yellow-red pheomelanin found in red hair and red feathers Two biological functions of melanins have been identified. First, they have been shown to increase optical efficiency of the eye, and secondly, they are responsible for the production of color patterns in hair and superficial epidermis

Melanin synthesis or melanogenesis occurs via enzymatic and non enzymatic pathways During melanin synthesis and polymerization, unpaired electrons are left over from the process and in this respect melanin can be thought of as a free radical Research has shown that melanins may serves as antioxidants in various ways. For instance, in skin, high melanin levels contributes to protection from melanoma where it serves to absorb ultraviolet (UV) light. Melanins also bind transition metals preventing fenton type reactions and the production of the highly reactive hydroxyl radical (HO) On the other hand, illumination of eumelanins generates O2- that is quickly scavenged, but O2- can also reduce melanin intermediates such as quinones to semiquinones (free radicals) as well as oxidizing semiquinones It is not clear whether melanins are established antioxidants or pro-oxidants in the cell. This review will focus on melanogenesis, antioxidant and pro-oxidant properties and detection of melanins.

 

Melanogenesis:

 

Melanogenesis is the production of color pigments eumelanin and pheomelanin in melanocytes. Raper in the 1920’s laid the ground work that was later extended by Mason for understanding the mechanisms of tyrosine conversion into melanin by the actions of the enzyme

 tyrosinase The most significant outcome of their work was the derivation of the Raper-Mason scheme of melanogenesis . The two initial steps involve the tyrosine-mediated hydroxylation of tyrosine to 3, 4-dihydrophenyalanine (DOPA), and the oxidation of DOPA to Dopaquinone (DQ). It has been presumed that the backwards reactions from DOPA and Dopaquinone are so small compared to the forward reactions that they can be neglected.

The Raper-Mason scheme has been further updated as ongoing studies developed new elucidations into the metabolic pathways of melanin synthesis. An updated comprehensive scheme  depicts the two major pathways of synthesis that are divided into eumelanin and pheomelanin pathways.

The major steps in eumelanin formation are the cyclization of dopaquinone to leucodopachrome which is immediately oxidized to form dopachrome (DC). DC is a relatively stable intermediate with a half-life of approximately 30 minutes. After which it is tautomerically rearranged to form 5,6-dihydroxylindole-2-carboxylic acid (DHICA). DC may also spontaneously decarboxylate to 5,6-dihydroxyindole (DHI) which will rapidly oxidize to form indole 5,6-quinone. The final step is the polymerization to eumelanin .  Comprehensive scheme of metabolic pathways leading to melanins and related metabolites. The addition of thiols such as glutathione and cystein to eumelanin pathway is initiated by the  DQ The glutathionyldopa is rapidly converted to cysteinyldopa by ã-glutamyl transpeptidase (GTP). Oxidation of cysteinyldopa to cyclic quinine-imine intermediates that rearrange into benzothiazine derivatives occur. The benzothiazine derivatives rearrange into pheomelanin The exact mechanisms that occur in the pheomelanin pathway in the latter conversions are not clearly understood.  

 

 

 Melanin as an Antioxidant :

 

An important physiological function of melanin is related to its ability to protect against photochemical stress as evidenced by its increased generation in response to UV damage The chf monomers within DHI melanin. Chemical basis for melanin’s reactivity is believed to be due to the quinol/quinone redox transformation of the DHI form which undergoes two-electron oxidation to the corresponding quinone form  The DHI form can act as a superoxide dismutase by catalyzing the disproportionation of O2- to hydrogen peroxide (H2O2) and oxygen (O2) Experimentally it has been shown that normal melanocytes exposed to oxidative stress vary in their extracellular buildup of H2O2 that was proportional to their initial melanin content. This provided a means for the melanin rich melanocytes to inhibit the initial buildup of H2O2. In malignant melanocytes (melanomas), there was a decreased ability for them to neutralize the H2O2 indicating a protective effect of melanin. 

Melanocytes is under continuous low grade oxidative insult Within the melanocyte, the synthesis of melanin also results the polymer by promoting the production of the highly reactive HOin a Fenton Type reaction. The melanocyte whose primary function is to deliver melanin to keratino in the production of H2O2 that when inefficiently reduced by antioxidant enzymes (catalase, glutathione peroxidase) could lead to deleterious pathological conditions such as cancer. Excess H2O2 decomposes melanin in a process known as bleaching in vitro and induces higher tyrosinase levels in vivo.

 

Detection Method:

 

Electron Spin Resonance (ESR) ( EPR )

All known melanins contain free radicals that can be detected by EPR and melanin is the er with a relatively high concentration of free radical centers in vivo and in vitro. TR signal, a single structure-less slightly asymmetric line, is synthetic DOPA melanin  human RPE  The amount of mehí = 2.E = gµBB) where the spectra of acidified (pH 1) melanin samples are measured at liquid nitrogen temperatures in the g = 2 region usiped with 1 only known biopolymer he highly characteristic melanin EPR  and is based on results generated in a study concerning the loss of retinal pigmented epithelium (RPE) melanin in human eyes with aging. Signals  are from 1 mg mL-1 of synthetic DOPA melanin (standard), pooled human RPE cell extract and melanosomes from RPE pooled samples, respectively. The similarity of the EPR spectra from the three different sources off melanin rule out artifacts in the detection method. . ESR spectra obtained for 1 mg mL-1cell extracts  and human melanosome.Melanin was determined by an ESR assay (ng a Bruker ESP 300E ESR spectrometer operating in the X band and equip 00 kHz field modulation. The settings were microwave power 20 µW, modulation  amplitude 2.0 G and scan range 50 The acidic pH is used to release bound-to-melanin paramagnetic and diamagnetic metal ions thereby minimizing their effects on the EPR signal. To illustrate that the EPR method is a reliable quantitative measure for melanins, researchers establish a linear relationship between melanosome number and melanin in the particular vehicle that is being tested.

 

###################################################################################

 

Tea Melanin: The Innovative Technology for Melanin Production and Application

 

Tea Melanin can be produced in industrial scale. Previous attempts to produce melanin were not a commercial success, because the products were expensive, insoluble in water and unstable. Tea Melanin is highly soluble and has a stable reproducing quality. It possesses a unique combination of valuable properties, which have never been found for the other kind of compounds. Tea melanin provides the real possibility to replace the synthetic melanin in preparations, which are extremely expensive and sometimes are not safe.

The most attractive application of Tea Melanin is cosmetics. Product is expected to be of interest for such melanin customers like L’Oreal of France, Shiseido of Japan and Estee Lauder of the USA . The naturally produced Melanin could be used in sun protection creams, fake tanning products, skin moisturizers and shampoos. Like human melanin, the product can protect from harmful solar radiation that leads to cancer and aging. Tea Melanin is irreplaceable matter needed for treatment of incurable Vitiligo disease.

Other applications include health foods, which are indispensable for prevention of cancer, stimulation of immune activity, improvement of Parkinson’s Disease, and protection of invasion of HIV.

Tea Melanin possesses anti-venom activity that can be used for first aid purposes. Melanin also can be applied as stress-protective remedies.

Promising application of Tea Melanin is Photodynamic Therapy of tumor. The combination Melanin with porphyrines for this purpose provides the high selectivity of destruction of tumor cells surrounded with normal cells.

Industrial application of Tea Melanin includes extraction of precious metals, tanning of plastics and glass materials. Product acts as an amorphous semiconductor threshold switch. Switching is carried out reversibly at potential gradients two to three orders of magnitude lower than reported for inorganic thin films.

We are glad to present novel biopolymer of melanin nature belonging to the most elusive and enigmatic substances in the world. Melanin refers to a class of compounds, which are defined in the Merck Index as the pigments mostly responsible for the color of skin and hair. Actually, melanin provides more than color. It provides the most powerful protection against UV and visible light. It absorbs the higher energy light more than the lower energy light.

Normally, the skin protects itself by increasing the amount of melanin in the skin. However, the biosynthesis of melanin in the skin needs 3-8 days to develop. There is no protection in the decisive first days. Excessive sunlight causes permanent freckling, premature skin aging and increases the risk of developing skin cancers.

Another advantage for melanin is that it is an effective neutralizing agent for free radical – molecules, which are harmful to the human body. Melanin interacts with reactive oxygen species and protects cellular membranes and DNA from their damage.

It was found that among five pigments produce skin and hair color, melanin is of critical importance. Melanin serves other purposes in the body beyond darkening skin and hair. The loss of moisture in the skin is a principle contributor to premature skin aging, cracking and wrinkling. Furthermore, moisture loss in the hair contributes to dull, lifeless and brittle hair follicles. Thus, melanin is a critical element in the body’s natural defense against moisture loss and sunburn.

 

Skin is the largest organ of our body. Melanin is organizing molecule determining the function of skin.

Unfortunately, this valuable pigment is getting lost during the aging process. The loss of melanin is strongly correlated with skin aging. Also, there is apparently an inverse relationship between the melanin content in the skin and sun-induced skin damage, including skin cancer.

The absorption of UV-light by stratospheric ozone is decline last time. The high incidence of skin cancer will persuade most people to use sunscreen.

 Melanin in human skin weakens the penetration of ultraviolet and visible light.

1. Overwhelming data demonstrates that melanin in the skin confers protection from skin cancer, and the greater the level of melanin the greater the level of protection.

2. Melanin is the sun umbrella of our skin. Melanin is the skin's natural defense against UV rays.

3. Melanin particles both scatter and absorb ultraviolet light.

4. In the United States chances of getting skin cancer are 1 in 6. The majority will be men over 50 years old. The number of people with a skin cancer is rising about 4% each year.

5. Australia has the highest rate of skin cancer in the world. Arizona reports the highest rate of skin cancer in the United States .

6. Sunlight causes more than 90 percent of all cosmetic damage or sagging, bagging, wrinkling, and scaly skin.

 

 Melanin stands at the forefront of technology, which has revolutionized hair and skin care for the 21st century. We offer remedy for protection skin against the harmful factors based on Melanin derived from tea. A new method for producing Tea Melanin in commercial accessible quantities has been developed for the first time. Physico-chemical characteristics of Tea Melanin are represented by Appendix A.

The product obtained is nontoxic and can be used in composition of lotions, cremes, shampoo, mascaras, and ointments. Through our technology, we are able to incorporate Melanin into different cosmetic formulations (the examples of melanin formulation are given in Appendix B).

Tea Melanin can be useful for the treatment of different skin diseases, especially for Vitiligo. Although, Vitiligo is a non-life threatening, but it is emotionally devastating disease. The white spots in the skin are the result of the body's inability to produce melanin. According to the National Vitiligo Foundation (USA) there are very limited cosmetics currently available for a large numbers of Vitiligo sufferers. It is estimated that 1-2% of the world population suffers from Vitiligo.

Derived from the tea plant, Melanin can be balanced with other natural cosmetic ingredients providing a unique treatment of depigmented areas of the skin. Tea Melanin can act like original human melanin in the skin. It has the unique ability to resemble naturally into any skin tones.

It has been medically proven that melanin in the body protects against premature skin aging, wrinkling, sunburn and skin cancer associated with sun exposure. Melanin gives our skin its color, and acts as a natural shield against sun damage.

The experts agree: Sun exposure for anyone means skin damage. The results of this damage can range from a heightened potential for premature skin aging to a greater possibility of developing skin cancer. The sun damage that occurs today will be visible, through lines, wrinkles and may be skin cancer years from now.

All our products are para-aminobenzoic acid free. Some people with sensitive skin or who are allergic to sulfur drugs, also, develop an allergic reaction to para-aminobenzoic acid.

Melanin is also inside your eyes. It's the same pigment, which gives your skin and hair its color and protect your skin. In eyes melanin provide the most powerful protection against UV and visible light around. It is nature's solution to the problem of hazardous light.

Melanin occurs in the retinal epithelium - behind the retina, where its antioxidant properties reduce the risks of macular degeneration. People with more eye melanin have less occurrence of macular degeneration.

Nature provides us with an original supply of melanin at the back of the eye. Researchers believe that this melanin offers both photoprotection and vision enhancement (as does the black paint inside a camera). However, this valuable photoprotective pigment is lost during the aging process. About 15% of our original supply of melanin is lost in the eye by the age of forty and about 25% is lost by the age of fifty.

An exciting possibility is to put melanin into contact lenses and glasses. Melanin bound to a contact lens can neutralize harmful free radicals such as superoxide within the region between contact lens and the eye. For lens applications this is a revolutionary concept which may be of significant therapeutic value. The role melanin plays in eye protection is critical; ophthalmologists have reported that melanin in the eye reduces the risk of age-related macular degeneration.

It was found that Tea Melanin could be offered for design of glasses that provide both photoprotection and vision enhancement. Melanin contained glasses and lenses provide a way to compensate for the age lost of melanin.

Other application of Melanin is for antiglare filters anti-radiation filters. It can relieve eyestrain, blurred vision, and fatigue caused from working on a computer. Melanin can attenuates 99.99% of radiation and static electricity, providing outstanding protection to a computer user.

 List of companies producing Melanin or Melanin containing products allowed conclude that every Melanin available up to now is synthetic Melanin. Tea Melanin is the first natural product, which can be produced in industrial scale use.

Tea plant is the object of daily contact of the human. Owing to that, extracting of melanin from tealeaves has several advantages. First of all, tea Melanin does not possess any appreciable toxicity. The valuable property of tealeaves is the stable reproduction of quality, which is provided by the uniform of technological rules for it processing. Also, Melanin is generated by biosynthesis during of tealeaves fermentation. Therefore, tealeaves is an enriched source of melanin. Tea Melanin is distinguished from the synthetic manufacturing products by:

 

 

 

References 

Sava , V.M., and Huang, G.S. Magnetic resonance imaging contrast agent. US Patent Application (submitted)

Huang, G.S., and Sava , V.M. Method for production of melanin, US Patent Application (pending, application number 09/498,642)

Sava , V.M., Yang, S.M., Hong, M.Y., Yang, P.C., Huang, G.S. Isolation and characterization of melanic pigments derived from tea and tea polyphenols. Food Chemistry, 73/2, 177-184 (2001)

Sava , V.M., Yang, S.M., Hong, M.Y., Yang, P.C., Huang, G.S. A novel melanin-like pigment derived from black tea with immuno-stimulating activity. Food Research International 34/4, 337-343 (2001)

Hung, Y.C., Sava , V.M., Juang, C.L., Yeh, T., Shen W. C., Huang, G.S. Gastrointestinal enhancement of MRI with melanin derived from tealeaves. Journal of Ethnopharmacology (submitted)

Sava , V.M., Makan, S. Y., Hong, M.Y., Huang, G.S. Mechanism of antioxidant activity of melanin derived from tea: comparison between the different oxidative states. Free Radical Biology and Medicine (submitted)

  Physico-chemical characteristics of Tea Melanin

Specific density, g/cm3

1.345

Solubility in water, mg/ cm3

25

Average molecular weight, kDa

8-14

Elemental composition, %

C=49.5; H=6.8; N=7.4; Ashes=0.72

IR-spectra, cm-1

350-360; 3300, 1620, 1400; 1200-1050

Concentration of paramagnetic centers, s/g

4´ 1018

g-factor

2.004

Width of ESR spectra, Er

5.3

Mass-spectra

Hydroxybenzenes, m/z=93, 94, 109, 110, 125, 126, 141, 142, 157, 158, 174

Dihydroxybenzenes, m/z=110, 124, 168, 199, 200, 227, 228

Trihydroxybenzenes, m/z=97, 98, 111, 112, 125, 139, 140, 154

Dihydroxybenzencaron acids, m/z=109, 123, 137, 154, 165, 179

Hydroxybenzenecarbon acid, m/z=129, 136, 137, 161, 175, 199, 213, 227, 241, 256

Benzenfuranes, m/z=139, 140, 168

Quinones, m/z=107, 108

Indoles, m/z=116, 117, 132, 133, 147, 148, 149, 186, 187

Biological activity

Photo-protective

Radio-protective

Chelating of radio-nuclides

Anticonvulsive

Stress-protective

Anti-oxidant

Immuno-stimulating

HIV replication inhibiting

Binding of toxic metabolites

 

 

 

 

 

 

 

 

 

 

##########################################################################

 

WE HAVE  A DIFFERENT  PICTURE OF MELANIN STRUCTURE AND MELANOGENESIS ( Feb 2004 )

Write to  :       rnicolaus@tightrope.it

See  :             http://tightrope.it/nicolaus/index.htm

 

##########################################################################

Naples Feb 2004